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Matrix Methods for Microstrip Three-Dimensional

ANDREW FARRAR, MEMBER, IEEE, AND

Abstract—The matrix methods are applied to three-dimensionaf
microstrip problems with emphasis upon the general problem of dis-

continuities in microstrip. Discontinuities considered are 1) open
circuits, 2) change of width, and 3) gap in microstrip. Also, the capaci-

tance of rectangular sections of microstrip is computed. Computed

data agree well with experiment and data in the literature.

I. INTRODUCTION

T
HE METHOD of matrix inversion has been used

previously in solving scattering and radiation

problems in electromagnetic field theory [1]- [3 ].

Recently, the method has been applied to some two-

dimensional and three-dimensional problems in micro-

strip [4], [5]. Discontinuities such as a step or a gap in

the center conductor of microstrip constitute three-

dimensional problems. This paper describes the applica-

tion of the matrix methods to three-dimensional micro-

strip problems, with particular emphasis upon the gen-

eral problem of discontinuities in microstrip. Determi-

nation of the equivalent circuit parameters of a dis-

continuity, generally known as the characterization

data, is an important and necessary step in developing

computer-aided network-design techniques for micro-

strip. Only limited amounts of theoretical or experimen-

tal data [6] on discontinuities in (inhomogeneous)

microstrip have been reported, although there is exten-

sive data on (homogeneous) balanced strip transmis-

sion-line [7] and coaxial-line [8] discontinuities.

The purpose of this paper is twofold; first, to describe

the formulation of microstrip discontinuity problems in

terms of the matrix inversion method, and second, to

illustrate the use of this formalism by its application to

several microstrip discontinuities. The discontinuities

treated here are open circuits, gaps, and sudden change

of width. Data are plotted for a few commonly used di-

electric constants (e, = 1.0, 6.0, 9.6) and some compari-

son is made with available theoretical and experimental

data. The method outlined is a general one and is appli-

cable to any discontinuity: to obtain the excess or

lumped capacitance of a one-port device or the excess or

lumped static-capacitance matrix of an N-port device.
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Fig. 1. Microstrip rectangular section.

II. MATRIX METHODS FOR THREE-

DIMENSIONAL PROBLEMS

A. Finale Three-Dimensional Problems—Rectangular

Sections of Mkrostr@

The matrix method is a technique that reduces the

defining integral equation to an approximate matrix

equation. The formulation of the three-dimensional

problem is similar to that for the two-dimensional prob-

lem except that a new three-dimensional source function

(or integral of a Green’s function) is required. The basic

three-dimensional source function, i.e., the potential due

to a uniformly charged rectangular section in microstrip,

is given in the Appendix. In this section, we consider

first three-dimensional problems of finite extent, and the

specific example of rectangular sections of microstrip (a

pad) is treated. Next, the discontinuity problem, which

is essentially a problem of infinite extent, is considered

and several specific examples are given.

A rectangular section of microstrip transmission line,

of length L, width W, and height H above the ground

plane, is shown in Fig. 1. The rectangular surface is sub-

divided into n subsections. We assume that the charge

density is constant over each subsection (pulse expan-

sion functions) [1]. Let ai be the surface charge density

over As;. Point matching (impulsive weights) [1] is

used. The basic three-dimensional source function Dij

(the potential at point i due to a uniformly charged

subsection As), with a unit charge density, is given in

the Appendix. The ground plane is assumed to be at

zero potential and the conducting strip is assumed to be

at 1-V potential. The potential at point i (which may for

instance be in the center of the ith subsection) may be

written as follows:
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(since the potential was assumed to be equal to unity on

the rectangular pad), resulting in the matrix equation

[v]= [D][a]. (1)

The unknown charge densities [u] are obtained by ma-

trix inversion:

[a]= [D]-’[v]. (2)

The capacitance of the rectangular pad is

(3)

where Dij’ represents an element of matrix [D ]–1.

Fig. 2 shows the results of computation for the ca-

pacitance of rectangular sections of microstrip, for a

range of aspect ratios L/W between 0.2 and 1.0, and for

three different dielectric constants (e, = 1.0, 6.0, 9.6).

For e,= 1, these results agree with Reitan [9] within 2

percent. A comparison has also been made with data for

a dielectric-loaded parallel-plate capacitor by Adams

and Mautz [1o] for e, = 10. This is a different but related

problem. The data for the two problems agree within 5

percent for .H/ W< 5.0.

Clearly, the method described above may be applied

to any three-dimensional N-port microstrip geometry of

finite dimensions. For the IV-port case, with small n

total subsections, (1) is written as before except that N

different voltages appear in matrix [ V]. The capacitance

coefficients and the direct-capacitance coefficients are

calculated by partitioning [D ]–1 and summing the ap-

propriate terms.

Our motivation for treating the rectangular section

is related to discontinuity problems; the method used in

all of the discontinuity problems is treated here.

B. Microstrip Discontinu&es

1) The General Diiscontinu~ty Problem: The general

discontinuity problem is represented in Fig. 3. The dis-

continuity region is finite but is connected to one or

more infinitely long microstrip transmission lines. We

wish to describe the network properties of the discon-

tinuity.

First, we determine the N-port direct-capacitance

matrix of the finite structure with transmission lines

each of arbitrary length L (see Fig. 3), with the ground

plane as reference:

r

C,,(L) . . . C,N(L) -

[C(L)]= . . . . . . . . . .

1 civl(L) - . . CNN(L).

(4)

The direct-capacitance matrix is determined by matrix

methods as described in Section II-A of this paper.

The discontinuity may be represented by a lumped

direct-capacitance matrix [C], where
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Fig. 2. Capacitances of microstrip rectangular sections.

[c] =

where

CI1 cl, - - . CIN

C12 C22 - - . C2N
. . . . . . . . . . . .1 (5)

CN1 CNZ . . . CNN

Cii = lim [Ci~(L) – COiL – COC(~)] (6)
L+.
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Cij= lim C’;j(L), (i #j) (7)
L+.

and where C~3(L) is the element of the direct-capacitance

matrix for the finite structure, Cod is the capacitance per

unit length (two-dimensional capacitance) of the ~th

transmission line, and C~~(i, is the lumped open-circuit

capacitance of the ith line.

Note that in deriving (5) from (4) we have assumed

that the interactions between the infinite sections of

transmission lines are negligible, i.e., we assume that

most of the electric field lines between structure i and

structure j remain within the discontinuity region. This

is a good approximation in many cases. It would be a

poor approximation if the transmission lines were closely

spaced and parallel. In the parallel case, the effect of

coupling can be taken directly into account in (5) by

subtracting c~;j (two-dimensional capacitance per unit

length). In any case, the matrix methods for the capac-

itance matrix yield the complete charge distribution and

the distribution of flux lines between conductors so that

these various effects can be separated out if necessary.

Note that we treat problems in which the capacitive

effects predominate. Clearly, discontinuities involving

significant inductive effects, such as bends and spirals,

require an extension of the method.

2) Lumped Ca~acitance of Open- C~rcuded M~crostr@:

A semi-infinite open-circuited microstrip transmission

line is shown in Fig. 4. A (see Fig. 4) is the distance from

the end to the electrical open-circuit position. The effect

of the discontinuity may be represented by a lumped

shunt capacitance C~~. C~c is computed as follows: the

total capacitance of a rectangular section for an arbi-

trary length L, such as is shown in Fig. 1, is computed.

Then the length L is increased iteratively and the total

capacitance Ct(L) is computed every time. The equiva-

lent circuit of the open-circuited line of finite length L

may then be represented as in Fig. 5 (a). We define

C.xa(L) as follows: Cexc(L) = + [C,(L) – COL ], where C.

is the capacitance per unit length of the infinite (two-

dimensional) line of dimensions W’ and H and C,(L) is

CENTER
CONOUCTOR

\

DIELECTRIC

/

Fig. 4. Open-circuited microstrip.
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Fig. 5. Equivalent circuits for three microstrip discontinuities. (a)
Open-circuited microstrip. (b) Sudden change of width. (c) Gap
in microstrip.

the direct total capacitance of the open-circuited line

with arbitrary length L. 2 COXC(L) thus represents the

excess capacitance of the finite line, and as L-+ co,

Cex.(L) +COO :

Co, = ; ;+% [C,(L) – CoL]. (8)

There are several problems involved in such an iterative

procedure. The infinite series in the three-dimensional

source function converges rather slowly. The iterative

procedure also converges slowly. Moreover, the pro-

cedure involves the subtraction of two nearly equal

large numbers so that a very precise comparison of
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Fig.6. Excess capacitances of open-circuited microstrip.
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Fig. 7. Microstrip with sudden change of width.

C,(L) and C~L is necessary. A number of steps have

been taken to improve the convergence. We take ad-

vantage of the fourfold symmetry of the geometry in

open-circuited line. The length of the subsections was

varied using very large subsections in the centerof the

section, where the charge density is most uniform. A

geometric progression in the subsection lengths was

used. The computation is still time-consuming; about

7 min of computer time are required for each open-

circuit lumped-capacitance computation. Additional

computational details are included in Section II 1.

Fig. 6 shows the normalized lumped capacitance

Coo/W’ of open-circuited microstrip for a range of aspect

ratios W/17 of 0.5 to 10 and for several dielectric con-

stants (e, = 1.0, 6.0, 9.6). The data for e,= 9.6 have been

compared with measured data with good agreement for

W/H< 1.0. The open-circuit capacitance data are basic

to the computation of the lumped-capacitance matrix of

any discontinuity (6).

3) Sudden Change of L~newidth: Fig. 7 shows a mi-

crostrip transmission line in which the center conductor

width is abruptly changed. The equivalent circuit for

this problem consists of a shunt capacitance cd and is

also shown in Fig. 7.

\

t
\

~
L:

T

!!=2.5, <,=9.6%+-l
:=1.0, E,= 9.6

\kK ::2.5, < ~=6.O

To obtain Cd we consider a finite three-dimensional

geometry consisting of two lines of widths W. and W,

respectively, each of length L. The equivalent circuit is

shown in Fig. 5 (b). The total capacitance Ct (L) is com-

puted. As L+ ~ the discontinuity capacitance cd may

be expressed as

cd = lim lC,(L) – Co,(l) – C0~(2) – COIL – C02L] (9)
L+.

where C~~(l) and C..(2) are the open-circuit lumped

capacitances of lines of width W. and W, respectively,

and Col and C02 are the capacitances per unit length of

the infinite (two-dimensional) lines of widths W. and

W, respectively.

Fig. 8 shows the results of computation for ratios

W/W~ between 0.4 and 1.0 for several values of aspect

ratio W/H and for several dielectric constants (c, = 1.0,

6.0, 9.6).

4) Gap% Center Conductor: Fig. 9 shows a microstrip

transmission line with a gap of length s. The equivalent

circuit of the discontinuity may be represented as shown

in Fig. 9. The discontinuity capacitance matrix is a sym-

metrical matrix of order two as shown by the equivalent

circuit [Fig. 5 (c) ]. The elements of this matrix are de-

termined as follows.
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Fig.9. Gapin microstrip.

We start with the geometry shown in Fig. 9 consisting

of two lines of arbitrary length L separated by a gap.

The equivalent circuit is shown in Fig. 5 (c). We com-

pute the capacitance matrix as a function of L and then

obtain the matrix of the direct capacitances denoted by

[C(L) ]:

C,,(L) C,,(L)

[c(-L)] = [C,,(L) CU(Q 1 (lo)

and

C. = lim [cII(L) – COL – co,]
L.-) m

C, = li+m~ CM(L) = – lim c,,(L).
L+.

The computation of C~ does not involve the subtraction

of nearly equal large numbers (as does the computation

of CP) and thus the computation of Co is much less time-

consuming. m

Figs. 10 and 11 show the results of the computation of

C, and C,, respectively, for various aspect ratios, sepa-

rations, and dielectric constants. The data for Cg agree

with those of Stinehelfer [6] to within 2 percent. For

e,= 1 the results were compared with Oliner [7], who has

solved a related but different problem. For W/-H= 1

and e,= 1.0 the two results agree within 4 percent.

III. COMPUTATIONAL DETAILS

Symmetry was utilized to reduce the order of ma:

trices and thus save computation time and memory re-

quirements. The twofold symmetry of the change-of-

linewidth problem and the fourfold symmetry in the

open circuit, the gap problem, and the rectangular sec-

tions were taken into account. The computation time

was reduced by about 40 percent through the use of the

fourfold symmetry in the open-circuit problem. Of

course, reducing the order of the matrix also helps to

eliminate computational overflow and/or underflow.

The two-dimensional capacitances C~I and e~z of (9)

and Co of (8) were not computed directly from the two-

dimensional formulation. Attempts to use the two-

dimensional formulation resulted in very slow con-
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Fig. 10. Gap capacitance for gap discontinuity y in microstrip,

vergence of the iterative process. Instead we used the

three-dimensional formulation [(1 1), in the Appendix]

with single subsection along the length and multiple

subsections along the width. As the strip becomes long

(L/W, L/H>> l), the results of the two-dimensional and
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Fig. 11. Parallel capacitance for gap discontinuity in microstrip.

three-dimensional formulations agree closely (typically

for four significant figures) and thus the use of this

three-dimensional formulation is justified. Also, the

final results show good agreement with experimental

and theoretical data. The use of this three-dimensional

formulation resulted in considerable improvement in

the convergence of the iterative process, Apparently,

this is due to the fact that we are commutating Cii(L)

and C~i by a similar formulation.

In the computation of Cii(-L), the number of sub-

divisions (n) increases through iteration. To maintain n

within practical values, the length of the subsections

was varied, with much longer subsections near the cen-

ter of the transmission line where the charge density is

nearly uniform. A geometric progression of subsection

lengths was used. For example, in the computation of

the open-circuit capacitance, 6 divisions along the width

and 12 to 14 divisions along the length were sufficient.

Another factor in the computation time is the con-

vergence of the infinite series in D~j, (14). As noted ear-

lier, the convergence of this series is slower than that of

the two-dimensional source function. About 40 terms of

the series were required in our three-dimensional com-

putations as compared with about 10 terms required in

the two-dimensional computations. As W/Ii decreases,

the fringing becomes more important, and more terms

of the series are required. It is estimated that our data

are accurate within a few percent for W/lZ< 1.0; for

wider strips the error may increase somewhat.

Total computation time for the capacitance data was

about 1.8 min for each data point on rectangular sec-

tions, about 7 min for each open-circuit capacitance

computation, about 18 min for each capacitance matrix

for change of linewidth, and about 9 min for each ca-

pacitance matrix for the gap problem (GE635 com-

puter was used in all computations). Considerable ef-

fort has been devoted to reducing computation time,

but there are still several improvements that could be

made. For instance, the block symmetry of the matrix

(block Toeplitzicity) has not been utilized.

I repulsive weights (point matching) and pulse ex-

pansion functions [1] are used throughout. The match-

ing point -i is the center of subsection i.

IV. CONCLUSIONS

The matrix methods are applied to three-dimensional

problems with emphasis upon the general problem of

discontinuities in microstrip.

The discontinuities considered are: gap in microstrip,

sudden change of width, and end effect. The data for

the end effect are basic and enter into the computation

of the lumped-capacitance matrix of other discontinui-

ties. The method, as described, applies to those discon-

tinuities in which capacitive effects predominate.

Computed data agree well with experiment and other

data reported in the literature [6], [7], [9]. It is esti-

mated that the results are accurate to within a few per-

cent for lV/17 <1.0.

APPENDIX

THREE-DIMENSIONAL SOURCE FUNCTION POTENTIAL

OF A UNIFORMLY CHARGED

MICROSTRIP SUBSECTION

Fig. 1 shows a rectangular section of microstrip divided

into subsections. The typical subsection Asi of width

Axj, length Ayj, and center point (xj, yiy Zj) is shown.
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The typical subsection lies in the plane z = Zj with sides

parallel to the z and y axes, respectively. It is assumed

that the subsection is uniformly charged with surface

charge density of magnitude unity. We wish to calcu-

late the potential V(xi, y;, zi ) at a field point (xi, Y,, z,),

due to the uniformly charged typical subsection Asj.

First of all, we require the potential due to a uni-

formly charged plate in free space. Consider a uniformly

Now, we can treat the inhomogeneous problem of

Fig. 1. The source function D~j for the rectangular sub-

section of microstrip shown in Fig. 1 is obtained from

the free-space source function by multiple imaging as

follows [12], [13]:

Dij = ~ a.dij.(above) – uwd;jn(below) (13)
n= 1

charged rectangular plate identical to the subsection

Asj shown in Fig. 1 and at an identical location in free where d~jn(above) is the free-space source function for

space. Then the potential at a field point (x;, yi, zi ) is the nth image above the ground plane, dij~(below) is the

free-space source function for the nth image below the

V(% Y;, a) = +
groun-d plane, and an is the magnitude of th~ nth imaged

charge given by

“ssX2 U2 dx’dyf

xl u %/(xi – x’)’ + (y, – y’)’ + (z, – z’)’

where

Axj Ayj
xl=xj ——

2
yl=yj–~

Ax; Ayj
x2=xj+—

2
y2=yj+~”

Integration yields the following result:

Ayj @+ B’)(b + D’)
+ y 10g(a+ C’)(. + -4’)

(
– h tan–l ~ + tan–l Y

hB’ )

(

bd
+ h tan–l~ + tan-l—

hD’ )1
where

Ay, Ayj
~=yj —— — yi d=yj+~–yi

2

A’=~a2+c2+h2 B’=~bz+dz+bz

C’=~a2+d2+h2 D’=~bZ+cz+hz

(– l)n+l&12,

(11) an =
(6+ 6) “

diin(above) and dij.(below) may be obtained from (12)

by setting h equal to (2n – 2)11 and 2nH, respectively,

and replacing e. with e. Then, substituting dijn(above)

and dijn(below) in (13) we obtain

m (_l)n+l&l

Dij = ~
n= 1 27r(e + e.)

{

(c+ A)(d+B)(d+G)(c+l)
“ (xj–x;)lOg (d+ C)(c+ D)(c+ @(d+ ‘)

(d+ B)(d + C)(C + -@(c+ O+ + log

(C+ D)(G+ A)(d+G)(d+ F)

+ (yj’ – yi) log
(a+ A)(b+ B)(b + I)(a+ G)

(b+ D)(a+ C)(a+ E)(b+F)

(b+ B)(b-l-D)(a+ @(a+@+ 3; log

(a+ C)(a-l- A)(b + l)(b + F)

(– (2n – 2)H tan-l
(2?2 –U;)HA

(12) bd

+ ‘an-l (2?2 – 2)HB )
+ (2?Z – 2)H

(

ad bc
. tan-l

(2tz – 2)HC + ‘an-l (2n – 2)HD )

(

bd
+ 2nH tan–l * + tan-’ —

2PbHF )

( bc
– 2nH tan–l

)}
% + tan-l — (14)

2?ZHI

where

A = tia2 + C2 + (2m – 2)2H2 -?3 = <a’ + C2 + (2f@2

This result can also be obtained by summing the re-

sult given by Durand [11] for the potential over one
B=~b2+d2+(2n– Z)2H2 p = ~b2 + d2 + (znjj7

corner of a uniformly charged rectangular plate. The c = ~az + dz + (2n _ 2)ZHZ G = ~az + dz + (2nH~

potentials for four different rectangles are combined to

obtain the final general result given in (12). D = ~b2 + C2 + (2z – 2)2H2 1 = @2 + cz + (2fi@
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Parallel Rectangular Plates Separated

by a Dielectric Sheet

STUDENT MEMBER, IEEE, AND P. SILVESTER, ~MBER, IEEE

Abstract—To determine the capacitance between two rectangular

parallel plates separated by a dielectric sheet, the charge distribution
on the plates is formulated in terms of a Fredholm integral equation

of the first kind. This equation is solved numerically by a projective

method using polynomial approximants. The resulting capacitance
values are given in norma~zed graphical form, permitting capacitance

determination for any practical values of dielectric constant and geo-
metric parameters to within a few percent.

INTRODUCTION

I

N RECENT YEARS a substantial amount of

literature has become available for microstriplike

and related structures. But even with the increased

use of integrated circuits, there appears to be very little

data for finite plates on dielectric substrates. Reitan

[I] obtained the capacitance of two parallel square

plates in vacuo using the method of subareas. Barring-

ton [2] solved the same problem using a closely related

projection method. Adams and Mautz [3] found the

capacitance of a rectangular dielectric loaded capacitor

by the point-matching method and introduced special
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Fig. 1. (a) Rectangular metal plate on a metal-backed dielectric
substrate. (b) Parallel plate problem, equivalent to (a).

matrix elements to take care of the air–dielectric inter-

face. Farrar and Adams [4] obtained, very recently, the

capacitance of a rectangular section of a microstrip line

by the method of moments with pulse-expansion func-

tions and impulsive weights. They calculate the poten-

tial due to a uniformly charged rectangular plate in

vacuo and then generate the Green’s function as an

infinite series of images.

This paper takes a different approach to the static

capacitance for rectangular thin plates on a metal-

backed dielectric substrate, as shown in Fig. 1 (a). To

facilitate the analysis, the equivalent problem, shown in

Fig. 1 (b), is considered. It is well known that the electro-

static behavior of this configuration is governed by

Poisson’s equation subject to Dirichlet boundary condi-


