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Matrix Methods for Microstrip Three-Dimensional Problems

ANDREW FARRAR, mMeEMBER, IEEE, AND ARLON TAYLOR ADAMS, MEMBER, IEEE

Abstract—The matrix methods are applied to three-dimensional
microstrip problems with emphasis upon the general problem of dis~
continuities in microstrip. Discontinuities considered are 1) open
circuits, 2) change of width, and 3) gap in microstrip. Also, the capaci-
tance of rectangular sections of microstrip is computed. Computed
data agree well with experiment and data in the literature.

I. INTRODUCTION

HE METHOD of matrix inversion has been used
T previously in solving scattering and radiation

problems in electromagnetic field theory [1]-[3].
Recently, the method has been applied to some two-
dimensional and three-dimensional problems in micro-
strip [4], [5]. Discontinuities such as a step or a gap in
the center conductor of microstrip constitute three-
dimensional problems. This paper describes the applica-
tion of the matrix methods to three-dimensional micro-
strip problems, with particular emphasis upon the gen-
eral problem of discontinuities in microstrip. Determi-
nation of the equivalent circuit parameters of a dis-
continuity, generally known as the characterization
data, is an important and necessary step in developing
computer-aided network-design techniques for micro-
strip. Only limited amounts of theoretical or experimen-
tal data [6] on discontinuities in (inhomogeneous)
microstrip have been reported, although there is exten-
sive data on (homogeneous) balanced strip transmis-
sion-line [7] and coaxial-line [8] discontinuities.

The purpose of this paper is twofold; first, to describe
the formulation of microstrip discontinuity problems in
terms of the matrix inversion method, and second, to
illustrate the use of this formalism by its application to
several microstrip discontinuities. The discontinuities
treated here are open circuits, gaps, and sudden change
of width. Data are plotted for a few commonly used di-
electric constants (¢,=1.0, 6.0, 9.6) and some compari-
son is made with available theoretical and experimental
data. The method outlined is a general one and is appli-
cable to any discontinuity: to obtain the excess or
lumped capacitance of a one-port device or the excess or
lumped static-capacitance matrix of an N-port device.
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II. MATRIX METHODS FOR THREE-
DIMENSIONAL PROBLEMS

A. Fintte Three-Dimensional Problems— Rectangular
Sections of Microstrip

The matrix method is a technique that reduces the
defining integral equation to an approximate matrix
equation. The formulation of the three-dimensional
problem is similar to that for the two-dimensional prob-
lem except that a new three-dimensional source function
(or integral of a Green'’s function) is required. The basic
three-dimensional source function, i.e., the potential due
to a uniformly charged rectangular section in microstrip,
is given in the Appendix. In this section, we consider
first three-dimensional problems of finite extent, and the
specific example of rectangular sections of microstrip (a
pad) is treated. Next, the discontinuity problem, which
is essentially a problem of infinite extent, is considered
and several specific examples are given.

A rectangular section of microstrip transmission line,
of length L, width W, and height H above the ground
plane, is shown in Fig. 1. The rectangular surface is sub-
divided into # subsections. We assume that the charge
density is constant over each subsection (pulse expan-
sion functions) [1]. Let g, be the surface charge density
over As;. Point matching (impulsive weights) [1] is
used. The basic three-dimensional source function D;;
(the potential at point 7 due to a uniformly charged
subsection As), with a unit charge density, is given in
the Appendix. The ground plane is assumed to be at
zero potential and the conducting strip is assumed to be
at 1-V potential. The potential at point 4 (which may for
instance be in the center of the ¢th subsection) may be
written as follows:

Vi= 2, 0;Dij =1
i=1
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" (since the potential was assumed to be equal to unity on
the rectangular pad), resulting in the matrix equation

[v] = [D][s]. 1)

The unknown charge densities [¢] are obtained by ma-
trix inversion:

o] = [DI[V]. ©)

The capacitance of the rectangular pad is

C=20;=22 Dy 3)
J=1 =1 j=1
where D;; represents an element of matrix [D]-.

Fig. 2 shows the results of computation for the ca-
pacitance of rectangular sections of microstrip, for a
range of aspect ratios L/W between 0.2 and 1.0, and for
three different dielectric constants (¢,=1.0, 6.0, 9.6).
For ¢, =1, these results agree with Reitan [9] within 2
percent. A comparison has also been made with data for
a dielectric-loaded parallel-plate capacitor by Adams
and Mautz [10] for e, =10. This is a different but related
problem. The data for the two problems agree within 5
percent for H/W <£5.0.

Clearly, the method described above may be applied
to any three-dimensional V-port microstrip geometry of
finite dimensions. For the N-port case, with small #
total subsections, (1) is written as before except that N
different voltages appear in matrix [ V]. The capacitance
coefficients and the direct-capacitance coefficients are
calculated by partitioning [D]~! and summing the ap-
propriate terms.

Our motivation for treating the rectangular section
is related to discontinuity problems; the method used in
all of the discontinuity problems is treated here.

B. Microstrip Discontinuities

1) The General Discontinuily Problem: The general
discontinuity problem is represented in Fig. 3. The dis-
continuity region is finite but is connected to one or
more infinitely long microstrip transmission lines. We
wish to describe the network properties of the discon-
tinuity. ‘

First, we determine the N-port direct-capacitance
matrix of the finite structure with transmission lines
each of arbitrary length L (see Fig. 3), with the ground
plane as reference:

[C( L)] =1 ... . 4)

Cwvi(L) - - - Cuw(L)

The direct-capacitance matrix is determined by matrix
methods as described in Section 11-A of this paper.

The discontinuity may be represented by a lumped
direct-capacitance matrix [C], where
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Fig. 2. Capacitances of microstrip rectangular sections.
Cu Ci - -Cuwy
Ciz Co « Con
[C] = :

............ (5)

Cyx1 Cns Cun

where

Ciu= Il,im [Cii(L) — Coil ~ Cosiay) (6)
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lim Cij (L) 5

Low

Cij = (1 57) )

and where C;;(L) is the element of the direct-capacitance
matrix for the finite structure, C,; is the capacitance per
unit length (two-dimensional capacitance) of the <th
transmission line, and Co.,(” is the lumped open-circuit
capacitance of the 7th line.

Note that in deriving (5) from (4) we have assumed
that the interactions between the infinite sections of
transmission lines are negligible, i.e., we assume that
most of the electric field lines between structure 4 and
structure j remain within the discontinuity region. This
is a good approximation in many cases. It would be a
poor approximation if the transmission lines were closely
spaced and parallel. In the parallel case, the effect of
coupling can be taken directly into account in (5) by
subtracting c,;; (two-dimensional capacitance per unit
length). In any case, the matrix methods for the capac-
itance matrix yield the complete charge distribution and
the distribution of flux lines between conductors so that
these various effects can be separated out if necessary.

Note that we treat problems in which the capacitive
effects predominate. Clearly, discontinuities involving
significant inductive effects, such as bends and spirals,
require an extension of the method.

2) Lumped Capacitance of Open-Circuited Microstrip:
A semi-infinite open-circuited microstrip transmission
line is shown in Fig. 4. A (see Fig. 4) is the distance from
the end to the electrical open-circuit position. The effect
of the discontinuity may be represented by a lumped
shunt capacitance C,. C,, is computed as follows: the
total capacitance of a rectangular section for an arbi-
trary length L, such as is shown in Fig. 1, is computed.
Then the length L is increased iteratively and the total
capacitance C,(L) is computed every time. The equiva-
lent circuit of the open-circuited line of finite length L
may then be represented as in Fig. 5(a). We define
Cexo(L) as follows: Cexo(L)=2%[C/(L)~—C,L], where C,
is the capacitance per unit length of the infinite (two-
dimensional) line of dimensions W and H and C;(L) is
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the direct total capacitance of the open-circuited line
with arbitrary length L. 2Ce(L) thus represents the
excess capacitance of the finite line, and as L— ),
Cexc (L) _)Coc :

Coe =  lim [CL) — C,L]. (8)

Low
There are several problems involved in such an iterative
procedure. The infinite series in the three-dimensional
source function converges rather slowly. The iterative
procedure also converges slowly. Moreover, the pro-
cedure involves the subtraction of two nearly equal
large numbers so that a very precise comparison of
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C/(L) and C,L is necessary. A number of steps have
been taken to improve the convergence. We take ad-
vantage of the fourfold symmetry of the geometry in
open-circuited line. The length of the subsections was
varied using very large subsections in the center of the
section, where the charge density is most uniform. A
geometric progression in the subsection lengths was
used. The computation is still time-consuming; about
7 min of computer time are required for each open-
circuit lumped-capacitance computation. Additional
computational details are included in Section I11.

Fig. 6 shows the normalized lumped capacitance
Coe/ W of open-circuited microstrip for a range of aspect
ratios W/H of 0.5 to 10 and for several dielectric con-
stants (e, =1.0, 6.0, 9.6). The data for e,=9.6 have been
compared with measured data with good agreement for
W/H<1.0. The open-circuit capacitance data are basic
to the computation of the lumped-capacitance matrix of
any discontinuity (6).

3) Sudden Change of Linewidth: Fig. 7 shows a mi-
crostrip transmission line in which the center conductor
width is abruptly changed. The equivalent circuit for
this problem consists of a shunt capacitance C; and is
also shown in Fig. 7.
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To obtain Cg we consider a finite three-dimensional
geometry consisting of two lines of widths W, and W,
respectively, each of length L. The equivalent circuit is
shown in Fig. 5(b). The total capacitance C,(L) is com-
puted. As L— the discontinuity capacitance C; may
be expressed as

Ci= lim [CiL) — Coe(l) — Coe(2) — Cull — CoL] (9)

L—w

where C,.(1) and C,(2) are the open-circuit lumped
capacitances of lines of width W, and W, respectively,
and C, and C,; are the capacitances per unit length of
the infinite (two-dimensional) lines of widths W, and
W, respectively.

Fig. 8 shows the results of computation for ratios
W /W, between 0.4 and 1.0 for several values of aspect
ratio W/H and for several dielectric constants (¢, =1.0,
6.0, 9.6).

4) Gap in Center Conductor: Fig. 9 shows a microstrip
transmission line with a gap of length s. The equivalent
circuit of the discontinuity may be represented as shown
in Fig. 9. The discontinuity capacitance matrix is a sym-
metrical matrix of order two as shown by the equivalent
circuit [Fig. 5(c)]. The elements of this matrix are de-
termined as follows.
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We start with the geometry shown in Fig. 9 consisting
of two lines of arbitrary length L separated by a gap.
The equivalent circuit is shown in Fig. 5(c). We com-
pute the capacitance matrix as a function of L and then
obtain the matrix of the direct capacitances denoted by

[c@)]:

Cul(l) Ci(L)
lew] = [CIQ(L) Cn(L)] (10
and
Cp = hm [Cu(L) —_ CgL — Coc]
L——*oo
Cg = lim Clz(L) = — lim CIQ(L).
Lo Lo

The computation of C, does not involve the subtraction
of nearly equal large numbers (as does the computation
of Cp) and thus the computation of C, is much less time-
consuming. B

Figs. 10 and 11 show the results of the computation of
C, and C,, respectively, for various aspect ratios, sepa-
rations, and dielectric constants. The data for C, agree
with those of Stinehelfer [6] to within 2 percent. For
€, =1 the results were compared with Oliner [7], who has
solved a related but different problem. For W/H=1
and & =1.0 the two results agree within 4 percent.

I11. ComMPUTATIONAL DETAILS

Symmetry was utilized to reduce the order of ma-
trices and thus save computation time and memory re-
quirements. The twofold symmetry of the change-of-
linewidth problem and the fourfold symmetry in the
open circuit, the gap problem, and the rectangular sec-
tions were taken into account. The computation time
was reduced by about 40 percent through the use of the
fourfold symmetry in the open-circuit problem. Of
course, reducing the order of the matrix also helps to
eliminate computational overflow and/or underflow.

The two-dimensional capacitances Cop and Cys of (9)
and C, of (8) were not computed directly from the two-
dimensional formulation. Attempts to use the two-
dimensional formulation resulted in very slow con-
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vergence of the iterative process. Instead we used the
three-dimensional formulation [(11), in the Appendix ]
with single subsection along the length and multiple
subsections along the width. As the strip becomes long
(L/W, L/H>>1), the results of the two-dimensional and
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three-dimensional formulations agree closely (typically
for four significant figures) and thus the use of this
three-dimensional formulation is justified. Also, the
final results show good agreement with experimental
and theoretical data. The use of this three-dimensional
formulation resulted in considerable improvement in
the convergence of the iterative process. Apparently,
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this is due to the fact that we are computating C;;(L)
and C,; by a similar formulation.

In the computation of Cy;(L), the number of sub-
divisions (#) increases through iteration. To maintain #
within practical values, the length of the subsections
was varied, with much longer subsections near the cen-
ter of the transmission line where the charge density is
nearly uniform. A geometric progression of subsection
lengths was used. For example, in the computation of
the open-circuit capacitance, 6 divisions along the width
and 12 to 14 divisions along the length were sufficient.

Another factor in the computation time is the con-
vergence of the infinite series in D;;, (14). As noted ear-
lier, the convergence of this series is slower than that of
the two-dimensional source function. About 40 terms of
the series were required in our three-dimensional com-
putations as compared with about 10 terms required in
the two-dimensional computations. As W/H decreases,
the fringing becomes more important, and more terms
of the series are required. It is estimated that our data
are accurate within a few percent for W/H<1.0; for
wider strips the error may increase somewhat.

Total computation time for the capacitance data was
about 1.8 min for each data point on rectangular sec-
tions, about 7 min for each open-circuit capacitance
computation, about 18 min for each capacitance matrix
for change of linewidth, and about 9 min for each ca-
pacitance matrix for the gap problem (GE635 com-
puter was used in all computations). Considerable ef-
fort has been devoted to reducing computation time,
but there are still several improvements that could be
made. For instance, the block symmetry of the matrix
(block Toeplitzicity) has not been utilized.

Impulsive weights (point matching) and pulse ex-
pansion functions [1] are used throughout. The match-
ing point ¢ is the center of subsection 2.

IV. CoNcLUSIONS

The matrix methods are applied to three-dimensional
problems with emphasis upon the general problem of
discontinuities in microstrip.

The discontinuities considered are: gap in microstrip,
sudden change of width, and end effect. The data for
the end effect are basic and enter into the computation
of the lumped-capacitance matrix of other discontinui-
ties. The method, as described, applies to those discon-
tinuities in which capacitive effects predominate.

Computed data agree well with experiment and other
data reported in the literature [6], [7], [9]. It is esti-
mated that the results are accurate to within a few per-
cent for W/H <1.0.

APPENDIX
THREE-DIMENSIONAL SOURCE FUNCTION POTENTIAL
OF A UNIFORMLY CHARGED
MICROSTRIP SUBSECTION
Fig. 1 shows arectangular section of microstrip divided
into subsections. The typical subsection As; of width
Ax;, length Ay;, and center point (x;, v;, 2;) is shown.
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The typical subsection lies in the plane z=g; with sides
parallel to the x and y axes, respectively. It is assumed
that the subsection is uniformly charged with surface
charge density of magnitude unity. We wish to calcu-
late the potential V(x;, ¥4, 2:) at a field point (xi, ¥4, 24),
due to the uniformly charged typical subsection As;.
First of all, we require the potential due to a uni-
formly charged plate in free space. Consider a uniformly
charged rectangular plate identical to the subsection
As; shown in Fig. 1 and at an identical location in free
space. Then the potential at a field point (x;, s, i) is

1

V(xs, Vi, 8) = 1

TE€o
fxz v dx,dy/
=1 1 \/(xl — x’)2 + (yi - y')2 -+ (Zz - Z’)Z

where

(11)

Az; Ay;
x1=xj——2—— Y11= — 2

ij

Ay;
y2=3’i+7'

x2=x]+

Integration yields the following result:
{ (c+ 4@+ B
(x; — x:) log
@+ C)c+ D)
Ax; @+ BHYd+C)
+ — log
2 (c+ DY+ 4')
(a+ 4+ B)
&+ D)Y(a+C)
Ay; (b4 B)(®+ D)
-+ — log
2 (a4 Ch(a+ 4"

ac bd
—h (tan"1 + tan—! >
hA’ hB’

=+ h<tan—1£ -+ tan—! bd >}
rC’ hD’

1
¥ Xiy Vi, 8i) =

TEp

+ (9 — ¥4) log

(12)

where

ij ij
¢ =x; — —— — & b=+ —— &
2 2
Ay;
gy m Ry d=yt -y
C = Yj 5 y Yi 2 y

A =TT T
C=VAFTETR

h=Zj'—Zi.

B = VETETR
D =VE¥ R

This result can also be obtained by summing the re-
sult given by Durand [11] for the potential over one
corner of a uniformly charged rectangular plate. The
potentials for four different rectangles are combined to
obtain the final general result given in (12).
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Now, we can treat the inhomogeneous problem of
Fig. 1. The source function D;; for the rectangular sub-
section of microstrip shown in Fig. 1 is obtained from
the free-space source function by multiple imaging as
follows [12], [13]:

Di; = D andijn(above) — a,dsn(below)

n=1

(13)

where dij,(above) is the free-space source function for
the #th image above the ground plane, d;;,(below) is the
free-space source function for the nth image below the
ground plane, and @, is the magnitude of the »th imaged
charge given by

(_1)n+1kn—126
(e + €)
dijq.(above) and dsj,(below) may be obtained from (12)
by setting % equal to (2#—2)H and 2nH, respectively,

and replacing €, with e. Then, substituting d;,,(above)
and d;;,(below) in (13) we obtain

n

© (__l)n-l-lkn—l
g 27(e + e,)
{ (c+ A+ B)@d+ G+ 1)
- 9 (%5 — w4) log
@+ C)c+ D)+ E)d+ P
n Ay Io @+ BYd+ C)(c+ E)c+ I)
2 BT D+ DE+GE+ )
= 30 lo (a4 A+ B)b + D+ 6
N O Y DY a+ O+ EYb + F)
7 ® + B)(b + D)(a + E)(a + G)
2 B+t He+DG+ P
— (2n — 2)H(tan“1;¢c—
(2n — 2)HA
+ tan—lm> + (2% — Z)H

. (tan—l__ad___ _|_ tan—l _L.)
(2n — 2)HC (2n — 2)HD
-+ 2%H<tan—1 hd 4+ tan—! bd )
2nHE 2nHF

ad be
+ tan-t ———)}
2nHG 2nHI

- 2nH<tan—1 (14)

where

A=+ F &+ (2n — 2)°H?
B =0+ &+ 2n — 2):H*
C =i+ &+ (2n— 2):H?
D=8+ ¢+ (2n — 2)?H?

E= @ T &+ Cnh)
P =+ &F Qnl)
G =& F &+ CnH)?
I =B F &+ (nH)?
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Capacitance of Parallel Rectangular Plates Separated
by a Dielectric Sheet

PETER BENEDEK, STUDENT MEMBER, IEEE, AND P. SILVESTER, MEMBER, IEEE

Abstract—To determine the capacitance between two rectangular
parallel plates separated by a dielectric sheet, the charge distribution
on the plates is formulated in terms of a Fredholm integral equation
of the first kind. This equation is solved numerically by a projective
method using polynomial approximants. The resulting capacitance
values are given in normalized graphical form, permitting capacitance
determination for any practical values of dielectric constant and geo~
metric parameters to within a few percent.

INTRODUCTION

N RECENT YEARS a substantial amount of
I[ literature has become available for microstriplike

and related structures. But even with the increased
use of integrated circuits, there appears to be very little
data for finite plates on dielectric substrates. Reitan
[1] obtained the capacitance of two parallel square
plates ¢n vacuo using the method of subareas. Harring-
ton [2] solved the same problem using a closely related
projection method. Adams and Mautz [3] found the
capacitance of a rectangular dielectric loaded capacitor
by the point-matching method and introduced special
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Fig. 1. (a) Rectangular metal plate on a metal-backed dielectric
substrate. (b) Parallel plate problem, equivalent to (a).

matrix elements to take care of the air-dielectric inter-
face. Farrar and Adams [4] obtained, very recently, the
capacitance of a rectangular section of a microstrip line
by the method of moments with pulse-expansion func-
tions and impulsive weights. They calculate the poten-
tial due to a uniformly charged rectangular plate in
vacuo and then generate the Green’s function as an
infinite series of images.

This paper takes a different approach to the static
capacitance for rectangular thin plates on a metal-
backed dielectric substrate, as shown in Fig. 1(a). To
facilitate the analysis, the equivalent problem, shown in
Fig. 1(b), is considered. [t is well known that the electro-
static behavior of this configuration is governed by
Poisson’s equation subject to Dirichlet boundary condi-



